CultureMath
[1] Approximation diophantienne et réseaux
[2] Une démonstration originale de l'infinité de l'ensemble des nombres premiers
[3] Sur l'algorithme RSA
[4] Arithmétique
[5] Fermat revisité
[6] Le problème des nombres gelés de Saint-Exupéry
[7] Les mathématiques du mouvement Introduction informelle aux systèmes dynamiques
[8] Petits pièges de la simulation numérique
[9] Le théorème de Sharkovskii
[10] Arbres et dérivée d'une fonction composée
[11] Homographies et suites récurrentes
[12] L'intégration selon Riemann et selon Lebesgue
[13] Signal numérique et théorie de l'échantillonnage
[14] Les intégrales de Coxeter
[15] Equirépartition d'une suite de nombres
[16] Addendum sur l'équirépartition
[17] Racine carrée fonctionnelle
[18] Le lemme de Baire
[19] Le théorème de JUEL et la surface de CLEBSCH
[20] Critères d'Ermakov
[21] Le produit d'Hadamard de deux séries entières
[22] Racine carrée fonctionnelle
[23] Jauge d'une cuve à Mazout
[24] Sur les nombres constructibles
[23] Construction des polygones réguliers
[26] Courbure des surfaces triangulées
[27] Le problème des 5 cercles
[28] Reconnaître effectivement les Ensembles Algébriques Réels
[29] Pour nouer, il faut courber
[30] Autour des triangles inscrits sur une hyperbole équilatère
[31] Gaspard Monge, de la planche `a dessin aux lignes de courbure
[32] Loi de groupe dans un triangle
[33] Les épi ou hypo trochoïdes
[34] Géométrie sur une Strophoïde
[35] Fermeture Hexagonale
[36] Cubiques circulaires passant par leurs foyers singuliers
[37] Combien de fois faut-il battre un jeu de cartes ?
[38] Avant le référendum
[39] La percolation
[40] Processus de branchement et descendance d'un individu
[41] Marches aléatoires sur Z
[42] Le jeu de Pile ou Face
[43] Le Berlekamp's switching game
[44] Jeux sur les graphes et théorème de Ramsey
[45] Jeux et stratégies
[46] Equations algébriques
[47] Intégration de polynômes, points de Gauss
[48] Les tonalités musicales vues par un mathématicien
[49] Loi de groupe sur une surface
[50] La transformation du Boulanger
[51] Rubik’s cube, groupe de poche
[52] Compte de rebonds
[53] La toupie Tippe-Top
[54] Détermination du sexe selon la température chez les crocodiles
[55] Calcul Tensoriel. Application à la relativité.
[56] Equations de Maxwell et formes différentielles, vers la relativité restreinte
[57] Les motifs des pelages d’animaux
[58] Les cercles de Tücker
[59] Interactions entre espèces, modèle de Lotka-Volterra
[60] Équation de la chaleur : traitement numérique
[61] Simulation numérique de l'équation de la chaleur
[62] Du bruit dans les images
[63] Image and movie denoising by nonlocal means
[64] Construction des entiers naturels
[65] Les axiomes de Zermelo-Fraenkel
[66] Entiers relatifs
[67] Nombres rationnels
[68] Nombres réels
[69] Nombres complexes
[70] Quaternions
[71] Ordinaux
[72] La construction des Réels par les coupures de Dedekind
[73] Laplace, Turing et la géométrie impossible du "jeu de l'imitation"
[74] La divination sikidy à Madagascar
[75] Les généralisations de la notion mathématique d'intégrale au 19e siècle
[76] Le processus d'abstraction dans le développement des premières théories de la mesure
[77] Les deux premiers journaux mathématiques français: les Annales de Gergonne (1810-1832) et le Journal de Liouville (1836-1845)
[78] Pourquoi, pour qui enseigner les mathématiques? Une mise en perspective historique des finalités et des contenus de l'enseignement des mathématiques dans la société française au XXe siècle.
[79] Les matrices : formes de représentation et pratiques opératoires (1850-1930)
[80] La loi des grands nombres, le théorème de De Moivre-Laplace
[81] La formule de Stirling
[82] Urnes aléatoires, populations en équilibre et séries génératrices
[83] Zeta de 3 est irrationnel
[84] Généalogie de populations : le coalescent de Kingman
[85] Cantor et la France
[86] Introduction à la Théorie des Groupes
[87] À la recherche de la genèse du dernier mémoire mathématique de Georg Cantor
[88] Le triangle: philosophie, histoire, mathématiques
[89] Au menu: de la géométrie à toutes les sauces
[90] Gaston DARBOUX : « Principes de Géométrie Analytique »
[91] "Souvenirs sur Sofia Kovalevskaya" de Michèle Audin
[92] Eléments d'analyse et d'algèbre (et de théorie des nombres)
[93] Pourquoi les mathématiques sont-elles difficiles ?
[94] Souvenirs sur Sofia Kovalevskaya - interview/discussion avec Michèle Audin
[96] Analyse mathématique - La maîtrise de l'implicite
[97] Epistémologie mathématique
[98] Galois, le mathématicien maudit
[99] Les Clefs pour la PSI et la PSI*
[100] Blagues mathématiques et autres curiosités
[101] Escapades arithmétiques
[102] Le jardin des courbes - Dictionnaire raisonné des courbes planes célèbres et remarquables
[101] Le problème de l'espace. Sophus Lie, Friedrich Engel et le problème de Riemann-Helmholtz
[102] Riemann : Le géomètre de la nature
[103] Eléments d'analyse et d'algèbre (et de théorie des nombres) (présentation par l’auteur)
[104] La construction tractionnelle des équations différentielles
[105] Géométrie analytique classique
[106] La passeggiata - Battements d'ailes au jardin du Luxembourg
[107] Vers une nouvelle philosophie de la nature
[108] Probabilités et statistiques aujourd'hui
[109] Des Mathématiciens de A à Z
[110] Souvenirs sur Sofia Kovalevskaya (parutions)
[111] Cantor et la France
[112] Dimensions
[113] Arithmétique
[114] La correspondance entre Henri Poincaré et les physiciens, chimistes et ingénieurs
[115] Premiers cours de philosophie positive
[116] Une Introduction à la théorie des nombres
[117] Outils mathématiques à l’usage des scientifiques et ingénieurs
[118] Nombres : Eléments de mathématiques pour philosophes
[119] Images des Mathématiques 2004-2006
[120] Leçons de mathématiques d'aujourd'hui
[121] Zoom sur les métiers des mathématiques
[122] Autour du centenaire Lebesgue
[123] L'épistémologie : état des lieux et positions
[124] Philosophie naturelle et géométrie au XVIIe siècle
[125] Les Mathématiques dans la Cité
[126] Réduction des endomorphismes
[127] Les femmes et l'enseignement scientifique
[128] Exercices de mathématiques pour physiciens
[129] La Relativité de Poincaré de 1905
[130] L'espace physique entre mathématiques et philosophie
[131] Jacques Hadamard, un mathématicien universel
[131] Un mathématicien d'exception
[132] Nouvelle bibliographie cournotienne
[133] Paul Painlevé (1863-1933). Un savant en politique
[134] La naissance de la théorie de l'information ou la force d'une idée simple
Franz Goldscheider (1852-1926) est un « ancien élève » de Cantor, professeur de mathématiques dans un lycée de Berlin. La lettre de Cantor du 18 juin 1886, dont nous donnons ci-dessous une traduction française, est la première manifestation connue d’un échange entre les deux mathématiciens, qui se poursuivra de 1886 à 1888. Cette première lettre constitue un véritable exposé introductif des fondements de la théorie cantorienne des ensembles, présentant les notions de cardinaux et d'ordinaux et leurs premières manipulations opératoires.
Dimensions, c'est une promenade mathématique (en neuf chapitres) pour que le public le plus large possible puisse découvrir progressivement la quatrième dimension. Dimensions est à la fois un site et un DVD multilingues (117 min). C'est l'aboutissement de deux ans de travail par une équipe qui s'investit depuis des années dans la recherche mathématique et qui souhaite partager avec le public sa passion pour cette science.
Gaston Darboux (1842-1917) est un des grands géomètres français, dans la tradition de Monge ou de Chasles. Ce fut d'ailleurs le successeur de Chasles comme professeur de géométrie à la Sorbonne, chaire qu'il occupa pendant trente-six ans. Darboux est surtout connu pour ses travaux de géométrie différentielle (on disait plutôt géométrie infinitésimale), et le traité le plus célèbre qu'il ait écrit a pour titre « Leçons sur la Théorie générale des Surfaces ». C'est là en particulier qu'il utilise la méthode du trièdre mobile, connu également sous le nom du trièdre de Darboux-Ribaucour...
Quelques problèmes découverts par Norbert Verdier dans des périodiques et manuels du XIXe siècle.
Les mathématiques ont bénéficié, dans la France et l’Europe du XIXème siècle, d’une nouvelle forme de communication : les périodiques qui leur ont été dédiés. Les Annales de Joseph-Diez Gergonne, publiées mensuellement de 1810 à 1832, constituent le premier journal de mathématiques. Joseph Liouville, en digne successeur de Gergonne, publia à partir de 1836, sous une forme héritée des Annales, le Journal de Mathématiques Pures et Appliquées. Nous nous intéressons ici à ces deux périodiques sous un angle transdisciplinaire : histoire de la diffusion scientifique en les situant par rapport à d'autres journaux de cette première moitié du XIXème siècle, histoire des mathématiques, épistémologie.
Présente dès la plus haute antiquité, l'arithmétique ou théorie des nombres est encore en plein essor de nos jours. Marc Hindry nous en offre un panorama exceptionnel, qui montre la vitalité et la vigueur de cette discipline. Son livre brasse les innombrables notions de nombre. Il est à la fois un cours de base très complet et un guide vers plusieurs thèmes de recherche actuels.
Le but de cet article est d'introduire à deux notions utilisées actuellement dans la recherche en théorie des nombres : les points rationnels et les courbes elliptiques. On y trouvera en premier lieu une explication de l'intérêt porté aux points rationnels, en lien avec le théorème de Pythagore. Ensuite, après avoir expliquer la notion de loi de groupe sur les points rationnels d'une courbe elliptique, on énonce un résultat important, le théorème de Mordell- Weil.
A l'occasion de la sortie de son livre "Arithmétique" aux éditions Calvage et Mounet (2008), Marc Hindry a bien voulu répondre aux questions de CultureMATH.
A l'occasion de la sortie de son livre "Arithmétique" aux éditions Calvage et Mounet (2008), Marc Hindry a bien voulu répondre aux questions de CultureMATH. Dans cette conversation à bâtons rompus, il nous parle de son travail de mathématicien et d'enseignant et nous entraîne sur les traces de Fermat, Euler, Gauss, Dirichlet, Riemann et bien d'autres.