Supérieur

[1] Approximation diophantienne et réseaux
[2] Une démonstration originale de l'infinité de l'ensemble des nombres premiers
[3] Sur l'algorithme RSA
[4] Arithmétique
[5] Fermat revisité
[6] Le problème des nombres gelés de Saint-Exupéry
[7] Les mathématiques du mouvement Introduction informelle aux systèmes dynamiques 
[8] Petits pièges de la simulation numérique
[9] Le théorème de Sharkovskii
[10] Arbres et dérivée d'une fonction composée
[11] Homographies et suites récurrentes
[12] L'intégration selon Riemann et selon Lebesgue
[13] Signal numérique et théorie de l'échantillonnage
[14] Les intégrales de Coxeter
[15] Equirépartition d'une suite de nombres
[16] Addendum sur l'équirépartition
[17] Racine carrée fonctionnelle
[18] Le lemme de Baire
[19] Le théorème de JUEL et la surface de CLEBSCH
[20] Critères d'Ermakov
[21] Le produit d'Hadamard de deux séries entières
[22] Racine carrée fonctionnelle
[23] Jauge d'une cuve à Mazout
[24] Sur les nombres constructibles
[23] Construction des polygones réguliers
[26] Courbure des surfaces triangulées
[27] Le problème des 5 cercles
[28] Reconnaître effectivement les Ensembles Algébriques Réels
[29] Pour nouer, il faut courber
[30] Autour des triangles inscrits sur une hyperbole équilatère
[31] Gaspard Monge, de la planche `a dessin aux lignes de courbure
[32] Loi de groupe dans un triangle
[33] Les épi ou hypo trochoïdes
[34] Géométrie sur une Strophoïde
[35] Fermeture Hexagonale
[36] Cubiques circulaires passant par leurs foyers singuliers
[37] Combien de fois faut-il battre un jeu de cartes ?
[38] Avant le référendum
[39] La percolation
[40] Processus de branchement et descendance d'un individu
[41] Marches aléatoires sur Z
[42] Le jeu de Pile ou Face
[43] Le Berlekamp's switching game
[44] Jeux sur les graphes et théorème de Ramsey
[45] Jeux et stratégies
[46] Equations algébriques
[47] Intégration de polynômes, points de Gauss
[48] Les tonalités musicales vues par un mathématicien
[49] Loi de groupe sur une surface
[50] La transformation du Boulanger
[51] Rubik’s cube, groupe de poche
[52] Compte de rebonds
[53] La toupie Tippe-Top
[54] Détermination du sexe selon la température chez les crocodiles
[55] Calcul Tensoriel. Application à la relativité.
[56] Equations de Maxwell et formes différentielles, vers la relativité restreinte
[57] Les motifs des pelages d’animaux
[58] Les cercles de Tücker
[59] Interactions entre espèces, modèle de Lotka-Volterra
[60] Équation de la chaleur : traitement numérique
[61] Simulation numérique de l'équation de la chaleur
[62] Du bruit dans les images
[63] Image and movie denoising by nonlocal means
[64] Construction des entiers naturels
[65] Les axiomes de Zermelo-Fraenkel
[66] Entiers relatifs
[67] Nombres rationnels
[68] Nombres réels
[69] Nombres complexes
[70] Quaternions
[71] Ordinaux
[72] La construction des Réels par les coupures de Dedekind
[73] Laplace, Turing et la géométrie impossible du "jeu de l'imitation"
[74] La divination sikidy à Madagascar
[75] Les généralisations de la notion mathématique d'intégrale au 19e siècle
[76] Le processus d'abstraction dans le développement des premières théories de la mesure
[77] Les deux premiers journaux mathématiques français: les Annales de Gergonne (1810-1832) et le Journal de Liouville (1836-1845)
[78] Pourquoi, pour qui enseigner les mathématiques? Une mise en perspective historique des finalités et des contenus de l'enseignement des mathématiques dans la société française au XXe siècle.
[79] Les matrices : formes de représentation et pratiques opératoires (1850-1930)
[80] La loi des grands nombres, le théorème de De Moivre-Laplace
[81] La formule de Stirling
[82] Urnes aléatoires, populations en équilibre et séries génératrices
[83] Zeta de 3 est irrationnel
[84] Généalogie de populations : le coalescent de Kingman
[85] Cantor et la France 
[86] Introduction à la Théorie des Groupes
[87] À la recherche de la genèse du dernier mémoire mathématique de Georg Cantor
[88] Le triangle: philosophie, histoire, mathématiques
[89] Au menu: de la géométrie à  toutes les sauces
[90] Gaston DARBOUX : « Principes de Géométrie Analytique »
[91] "Souvenirs sur Sofia Kovalevskaya" de Michèle Audin
[92] Eléments d'analyse et d'algèbre (et de théorie des nombres)
[93] Pourquoi les mathématiques sont-elles difficiles ?
[94] Souvenirs sur Sofia Kovalevskaya - interview/discussion avec Michèle Audin
[96] Analyse mathématique - La maîtrise de l'implicite
[97] Epistémologie mathématique
[98] Galois, le mathématicien maudit
[99] Les Clefs pour la PSI et la PSI*
[100] Blagues mathématiques et autres curiosités
[101] Escapades arithmétiques
[102] Le jardin des courbes - Dictionnaire raisonné des courbes planes célèbres et remarquables
[101] Le problème de l'espace. Sophus Lie, Friedrich Engel et le problème de Riemann-Helmholtz
[102] Riemann : Le géomètre de la nature
[103] Eléments d'analyse et d'algèbre (et de théorie des nombres) (présentation par l’auteur)
[104] La construction tractionnelle des équations différentielles
[105] Géométrie analytique classique
[106] La passeggiata - Battements d'ailes au jardin du Luxembourg 
[107] Vers une nouvelle philosophie de la nature
[108] Probabilités et statistiques aujourd'hui
[109] Des Mathématiciens de A à Z
[110] Souvenirs sur Sofia Kovalevskaya (parutions)
[111] Cantor et la France
[112] Dimensions
[113] Arithmétique
[114] La correspondance entre Henri Poincaré et les physiciens, chimistes et ingénieurs
[115] Premiers cours de philosophie positive
[116] Une Introduction à la théorie des nombres
[117] Outils mathématiques à l’usage des scientifiques et ingénieurs
[118] Nombres : Eléments de mathématiques pour philosophes
[119] Images des Mathématiques 2004-2006
[120] Leçons de mathématiques d'aujourd'hui
[121] Zoom sur les métiers des mathématiques
[122] Autour du centenaire Lebesgue
[123] L'épistémologie : état des lieux et positions
[124] Philosophie naturelle et géométrie au XVIIe siècle
[125] Les Mathématiques dans la Cité
[126] Réduction des endomorphismes
[127] Les femmes et l'enseignement scientifique
[128] Exercices de mathématiques pour physiciens
[129] La Relativité de Poincaré de 1905
[130] L'espace physique entre mathématiques et philosophie
[131] Jacques Hadamard, un mathématicien universel 
[131] Un mathématicien d'exception
[132] Nouvelle bibliographie cournotienne
[133] Paul Painlevé (1863-1933). Un savant en politique
[134] La naissance de la théorie de l'information ou la force d'une idée simple

 
Articles du programme de Supérieur

Cet ouvrage s'adresse à tous ceux qui veulent s’initier à la théorie des graphes. Conçu pour comprendre facilement les bases, il permet de débroussailler un peu le terrain avant d'aborder des notions plus complexes. Les novices, sans culture mathématique particulière, peuvent donc le lire sans crainte de se trouver perdus, en tout cas jusqu’au chapitre 4 à partir duquel quelques connaissances sur les matrices puis, plus loin, sur les probabilités et les suites sont nécessaires...

C'est l'héroine de l'histoire, mathématicienne, écrivain, femme engagée, libre, en un mot : vivante. Commençons par la toupie, jeu d'enfant bien (?) connu mais également objet qui fascine depuis longtemps les mathématiciens. Une toupie un peu idéalisée, bien entendu, dont les évolutions prennent le nom de "mouvement d'un solide pesant autour d'un point fixe"...

Nous proposons de présenter la précision et la généralisation faites par Du Bois-Reymond et par Lebesgue de la condition d’intégrabilité R2.

Nous affirmons que la technique utilisée notamment par Cauchy pour généraliser l’intégrale de Cauchy pour les fonctions continues (IC1) aux intégrales impropres (I*C1 ou IC2) s’apparente à une technique qui permet d’effectuer un transfert d’un apprentissage.  En effet, Jacques Tardif propose la définition minimale suivante d’un transfert d’un apprentissage :

Nous retrouvons au 19e siècle quatre façons de définir ou de comprendre la notion mathématique d’intégrale : l’intégrale de Cauchy, l’intégrale de Riemann et les versions calculatoire et axiomatique de l’intégrale de Lebesgue.  Nous proposons d’étudier les généralisations de ces façons de définir l’intégrale en introduisant deux types de généralisations : les généralisations conservatives et les généralisations innovantes.  Dans le premier cas, la façon de définir l’intégrale ou de calculer l’intégrale est conservée et son extension est augmentée, c’est-à-dire qu’il y a plus de fonctions qui sont intégrables selon cette façon.  Dans ce second cas, la façon de comprendre l’intégrale change et il y a une réinterprétation, voire une reconstruction de la notion.

L'objet principal de ce livre est l'analyse mathématique, plus précisément l'étude des fonctions (explicites ou implicites) à une  variable réelle en l'abordant d'un point de vue soit local, c'est-à-dire au voisinage immédiat d'un point, soit asymptotique, c'est-à-dire pour des points situés fort loin de l’origine dans le plan...

Le nom du mathématicien allemand Georg Cantor (1845-1918) est notoirement lié à ses travaux sur l’infini, qui ont transformé le fondement des mathématiques dans la deuxième moitié du XIXe siècle. Ce sont d’autres aspects, relativement méconnus ou peu étudiés, qui sont abordés dans cet ouvrage. Établis à partir de la correspondance que le mathématicien échange avec les Français, ils permettent d’appréhender sous un angle nouveau la personnalité d’exception qu’est Georg Cantor, d’éclairer de manière inattendue les différentes formes de son activité.

Lorsqu’elle meurt à Stockholm en 1891, Sofia Kovalevskaya n’a que 41 ans. Elle a pourtant eu une vie d’une rare intensité. Ses études, puis sa carrière scientifique, l'auront conduite, de Moscou à Berlin, Paris ou Stockholm, à travers l’Europe. Elle aura soutenu une thèse de mathématiques, été nommée professeur d'université, édité une importante revue, écrit des livres, milité pour la cause des femmes, élevé sa fille...

Nous avons tous en tête des noms de mathématiciens : Pythagore, Newton, Gauss ou Cauchy. Le plus souvent, ce sont les notions et les théorèmes portant leur nom qui les ont rendus célèbres. Connaîtrions-nous Chasles sans sa relation, Thalès sans son théorème ? Cependant, ces noms restent souvent abstraits. Qui étaient ces femmes et ces hommes, quand et où ont-ils vécu, qu’ont-ils apporté aux mathématiques, à la société ?