Algèbre

Le lecteur est habitué aux lois de groupe usuelles dans des ensembles algébriques, parfois géométriques plans sur une hyperbole ou une cubique (en liaison avec les critères d’alignement de trois points, succédané des conséquences du théorème d’Abel, et utilisé maintenant en codage elliptique). Voici un exemple de loi de groupe sur une surface. Cette loi a été proposée dans un problème de concours à l’école supérieure des Industries chimiques de Nancy en 1947, dont l’énoncé est partiellement reproduit dans les « Exercices de Géométrie » de E. Râmis.

Imaginez une ronde de 100 personnes, portant tous des chapeaux de deux couleurs différentes. Chacun connait la couleur du chapeau de tous les autres, mais pas celle du sien. Maintenant, chacun son tour, les joyeux lurons peuvent dire un et un seul nom de couleur. Quand tous auront parlé, combien au maximum de personnes pourront connaître à coup sûr la couleur de leur chapeau ?

Ce texte en deux parties a pour but d'introduire les lecteurs à cette avancée majeure du dix-neuvième siècle qu'est la notion de groupe.  Il a été écrit afin de servir d'appoint aux candidats à l'agrégation interne ou externe, mais aussi pour toute personne désireuse de se cultiver !

Nous présentons ici un panorama des résultats et conjectures les plus classiques autour de la notion de transcendance. Ce n'est bien sûr pas une revue exhaustive de l'état de la recherche dans ce domaine, mais les problèmes dont il est ici question, quoique simples dans leur formulation, restent au coeur des préoccupations actuelles.

C'est en essayant de trouver une multiplication sur les triplets de réels (la multiplication sur les complexes correspondant à une multiplication sur les couples de réels) qu'Hamilton découvrit en 1843 les quaternions sur le "Brougham Bridge" à Dublin, gravant sa découverte sur une pierre du pont. L'obstacle majeur était que les quaternions sont en fait représentés par des quadruplets (et non des triplets) de réel, ce qui fait en réalité du corps des quaternions une extension de celui des complexes, même si on perd au passage la commutativité de la multiplication.

La question est de savoir s'il existe une méthode qui, étant donné un objet géométrique W, permet de savoir si W peut être décrit par des équations algébriques, à des changements qui ne modifient pas sa topologie près. Ce problème fait intervenir de manière fondamentale la notion de triangulation, et plus généralement mène à l'introduction de quelques notions importantes de topologie qui peuvent souvent se comprendre à l'aide de dessins.

Une équation n'est rien d'autre qu'une égalité entre deux membres. Souvent, il s'agit de déterminer une certaine quantité, connaissant simplement une égalité qui fait intervenir cette quantité inconnue. On parle d'équation algébrique lorsque l'on cherche à déterminer les racines d'un polynôme. Nous allons ici nous intéresser plus spécifiquement à ce type d'équation, et voir notamment des méthodes générales pour résoudre les équations algébriques de degré allant de 1 à 4.