Collège (cycle 4 | 5e-3e)

Ressources adaptées au programme de mathématiques de seconde


Le programme du cycle 4 (5e, 4e, 3e ; rentrée 2016) est disponible en version pdf.

Il est découpé en quatre grands thèmes, et assorti de l'enseignement de l'informatique et des EPI. Cliquez sur les différents thèmes pour obtenir une liste de ressources CultureMATH correspondantes.

  1. Nombres et calculs ;
  2. Organisation et gestion de données, fonctions ;
  3. Grandeurs et mesures ;
  4. Espace et géométrie

 

 
Articles du programme de Collège (cycle 4 | 5e-3e)

L’usage des ordinateurs a ranimé l’intérêt pour des techniques algorithmiques nées en d’autres lieux et d’autres temps. Souvent délaissées par les historiens et les scientifiques modernes, plus attachés à la constitution des concepts, ces procédures s’avèrent pourtant déterminantes dans les élaborations théoriques. Sans prétendre à l’exhaustivité, l’objectif de cet ouvrage est d’offrir un support historique et une épaisseur culturelle aux pratiques algorithmiques contemporaines...

Le nom de Pythagore résonne dans l’histoire de la pensée depuis 2 500 ans. Peu de personnages historiques ont engendré un mythe d’une telle ampleur et dont la persistance est d’autant plus remarquable qu’aucune institution n’entretient sa mémoire. Mais de larges zones d’ombre subsistent et un grand nombre de questions viennent à l’esprit...

Notre connaissance des mathématiques élaborées voici quelque quatre mille ans sur les rives du Tigre et de l’Euphrate est très récente. Ce n’est que dans la première moitié du siècle dernier que le mathématicien et historien des mathématiques Otto Neugebauer ainsi que l’assyriologue Thureau-Dangin ont fait émerger un continent insoupçonné de savoirs mathématiques, en parvenant à déchiffrer des tablettes excavées au cours des décennies antérieures lors de fouilles archéologiques en Mésopotamie — c’est-à-dire, en gros, dans l’Irak contemporain...

Comme tous les peuples du monde, les Mésoaméricains étaient soumis au rythme du dieu Soleil. Des pans entiers de la vie étaient inscrits dans une année organisée en 19 périodes, à savoir dix-huit ‘mois’ de vingt jours et un reste dit des jours inutiles, dormants, innommés…

Cette approche critique des nombres aztèques et mayas voudrait attirer l'attention des lecteurs sur les principaux systèmes d'écriture du nombre en usage dans l'antiquité mésoaméricaine. Les principaux sont les numérations écrites mayas et aztèques. La numération vigésimale de position des scribes mayas, de l'époque classique et des codex du postclassique, qui l'utilisèrent pour noter les dates dites du Compte long sous la forme d'un nombre à cinq chiffres exprimant, en nombre de jours, la durée écoulée depuis la date origine de la chronologie maya (11/08/-3113). La numération vigésimale additive des scribes aztèques, qui l'utilisèrent notamment pour noter, le plus souvent sous forme de nombres ronds à un ou deux chiffres significatifs, les quantités de tributs que chaque communauté devait remettre à la Triple Alliance.

Harvey et Williams (1981:1078-1079) présentent un tableau extrait d’un codex du XVIe siècle, dit codex Otlazpan. Il contient onze lignes contenant chacune un rectangle (avec ses largeur et longueur) et un impôt composé de trois sortes de tributs (pièces d’argent, charges de bois, têtes de volaille).

La valeur de ce plusieurs est à préciser au cas par cas, notamment parce que les implications de sa définition dépendent de la taille de la « base » du système de numération : « plusieurs » chiffres en base « deux » n’a pas la même signification que plusieurs chiffres en base « soixante » ou en base « million ». L’arbitraire n’est pas total car les sociétés humaines ont utilisé des bases de l’ordre de quelques dizaines au plus...

Ce n’est que dans la première moitié du siècle dernier qu’en parvenant à déchiffrer des tablettes excavées au cours des décennies antérieures lors de fouilles archéologiques en Mésopotamie (à peu près l’Irak d’aujourd’hui), on fit émerger un continent insoupçonné de savoirs mathématiques. Les scribes anciens nous ont laissé des tablettes qui posaient systématiquement des problèmes où l’on peut reconnaitre des équations quadratiques...

En raison d’une tradition qui remonte à l’Antiquité, les nombres nous apparaissent souvent comme l’objet privilégié de la pensée mathématique et philosophique. Ce prestige particulier fait pourtant oublier que – bien avant qu’ils ne deviennent l’objet de spéculations théologiques ou philosophiques – les nombres ont d’abord été l’outil de la pensée scientifique et économique et qu’ils ont servi à la gestion politique des États.

Second opus des miscellanées du professeur Stewart, cette Chasse aux trésors mathématiques vient grossir le butin amassé dans le Cabinet de curiosités. « À 14 ans, écrit Roger-Pol Droit, cet énergumène a commencé à collectionner énigmes logiques, paradoxes arithmétiques, loufoqueries matheuses de toutes sortes. Avec un appétit sans bornes et une jubilation qui finit par devenir contagieuse » (Le Monde des livres, 2 octobre 2009).