Seconde

Ressources adaptées au programme de mathématiques de seconde


Le programme de seconde (rentrée 2009) est disponible en version pdf.

Il est découpé en trois grands thèmes, et assorti de deux capacités transversales. Cliquez sur les différents thèmes pour obtenir une liste de ressources CultureMATH correspondantes.

  1. Fonctions
  2. Géométrie
  3. Statistique et probabilités

Deux capacités transversales (objectifs pour le lycée) :

 

 
Articles du programme de Seconde

La réalité d’un ensemble d’objets est délicate à définir et le problème des « universaux » qui date des Grecs, fût l’objet d’études des scolastiques durant tout le Moyen Âge. Les nominalistes pensent qu’il n’y a aucune réalité derrière un mot, les réalistes que la catégorie définie par les propriétés de ses éléments a une existence véritable...

Les idées reçues sur l'infériorité des filles en maths et en sciences sont toujours bien vivaces. Médias et magazines continuent de nous abreuver de vieux clichés qui prétendent que les femmes sont naturellement bavardes et incapables de lire une carte routière, alors que les hommes sont nés bons en maths et compétitifs…

La logique – prise dans un sens large – a connu d’incroyables progrès depuis deux siècles. On y a découvert l’infinie variété des infinis si grands qu’on en a le vertige ; les étranges hyperensembles qui forment toutes sortes de boucles ; l’ensemble de tous les ensembles avec ses paradoxes...

Ce volume constitue les actes du XVIIIe colloque inter-IREM d'histoire et épistémologie des mathématiques (Caen, 28-29 mai 2010). Pour l'historien des mathématiques, un texte a des destinataires, ceux pour lesquels l'auteur écrit ou qu'il imagine, et des lecteurs, ceux qui liront le texte ou sa traduction dans le temps long de l'histoire...

Cet article propose des liens internes et externes vers de  nombreuses ressources sur l'histoire et l'épistémologie des mathématiques.

Mathematics are not a road of any kind to Logic, whether to Logic speculative, or to Logic practical. A road to logic, did I say ? It is well, if Mathematics, from the inevitability of their process, and the consequent insertion, combined with rashness, which they induce, do not positively ruin the reasoning habits of their votary.

Les réactions au système créé par Boole auront une double conséquence. D'une part faire de la logique un enjeu dans les discussions philosophiques, et d'autre part conduire des mathématiciens à s'investir dans un domaine nouveau pour eux. En effet, les questions profondes alors soulevées par le développement des méthodes algébriques sont en résonance avec la production booléenne. La fin du XIX° siècle verra peu à peu s'élaborer, au niveau international, une recherche systématique pour intégrer au mieux cette logique nouvelle au corpus mathématique alors en cours de réorganisation. Ce processus aboutira au début du siècle suivant : la logique est bien une partie des mathématiques, et, de plus, elle en est le socle.

Quand l’histoire permet de faire la lumière sur les origines de neuf théories mathématiques pour mieux en comprendre les fondements... Les notions et concepts mathématiques ont souvent été inventés comme un moyen de résoudre des problèmes : comment maintenir la même pente dans la construction des pyramides ? comment creuser un tunnel par ses deux extrémités ? comment procéder à des partages, à des découpages de figures ? comment utiliser des représentations graphiques, des instruments pour effectuer des calculs d'ingénieurs, de congruences, d'erreurs ?